

Innovación y tecnología en soluciones biológicas

12 de Junio 2025 **Puerto Norte | Rosario**

ISOLATION AND INTERACTION STUDY OF Zn SOLUBILIZING YEASTS IN RICE (Oryza sativa L)

Salazar Tamayo A 1, Durand M¹, Wyss B¹, Michelini C¹, Colazo J², Rodríguez A¹, Romero F¹, Maiale S¹ 1 Instituto Tecnológico de Chascomús (CONICET-UNSAM). smaiale@intech.gov.ar 2 Programa de mejoramiento genético de arroz (INTA)

Universidad Nacional de San Martín

Η

NaCl+Zn₃(PO₄)₂ 16°C

MOLECULAR IDENTIFICATION

951 Pichia pseudolambica MG817630.1 Pichia pseudolambica MW617301.1 Pichia pseudolambica MW357360.1 Candida pseudolambica OP714332.1 50 Pichia inconspicua CBS 180 NR 111116.1 Candida inconspicua KP131717.1 100 Candida inconspicua KP131719.1

ISOLATION AND PRESELECTION Zn3(PO4)2 enriched medium Sampling XY Data: Correlation of [Zn] vs pH 600-R square 0.8785 500

PHOSPHORUS SOLUBILIZATION

Figure 2: Solubilizated Zn (ppm) in liquid medium with $Zn_3(PO_4)_2$ 0.1%, of 6 isolates from rice rhizosphere. Bars represent means ± S.E.

Isolates Figure 3: Solubilizated Zn (ppm) in liquid medium with ZnO 0.1%, of 6 isolates from rice rhizosphere. Bars represent means ± S.E.

Figure 5: Colony diameter as growth indicator of six selected microorganism in NaCl 0.6M and at 16°C, in two insoluble zinc sources, ZnO (B) and $Zn_3(PO_4)_2$ (C) and without Zn source (A).

INTERACTION WITH RICE PLANTS

Figure 8: Fluorometric modifications, height and dry weight of rice plants H426-25 with complete substrate, in uninoculated and inoculated plants with strain 50 and 64.

LOCALIZATION TEST

1.0-

Table 1: Localization of yeasts 50 and 64 in rice plants of variety H 426-25.

Yeast	Leaves surface	Leaves endophyte	Root surface	Root endophyte
50	NO	NO	YES	YES (168-8771 cfu/mg root)
64	NO	NO	YES	YES (3389-3555 cfu/mg root)

FIELD ASSAY

Figure 9: Fluorometric modifications, height and fresh weight of H426-25 rice plants on three different substrates (-Zn, ZnO and ZnSO4) in uninoculated and inoculated plants with strain 50 and 64.

AIGH con AIG ALOIN ເຈົ

Figure 10: Interaction of yeasts 50 and 64 measured trought filled grains and grains/m²

CONCLUSIONS

- 1. All six selected isolates exhibited high zinc solubilization capacity with the tested Zn sources
- 2. Isolate 64 demonstrated greater phosphorus solubilization ability compared to the other strains
- 3. Strains 28, 50, 61, and 64 showed higher tolerance to low temperatures and salinity than strains 21 and 49.
- 4. The selected isolates were accurately identified as *Pichia pseudolambica* strains through BLAST analysis of the ITS and 16S regions using the NCBI database
- 5. Both strains were found to colonize the rhizoplane as well as the internal tissues of rice roots
- 6. Pathogenicity assays indicated no detrimental effects of the yeasts on rice plants under optimal nutrient conditions
- 7. The yeasts *Pichia pseudolambica* CdU 50 and CdU 64 exhibited promising biotechnological potential as plant growth-promoting agents in rice under zinc-deficient soils in laboratory conditions
- 8. Pichia pseudolambica CdU 50 significantly increased filled grains per panicle and grains per m² in zinc-deficient soil under field conditions
- 9. Since the field trial was conducted only once, further studies are recommended to validate the biotechnological potential of the yeasts at this level

www.congresocasafe.com.ar